加工定制:是 | 种类:废气处理设备 | 品牌:绿然 |
订货号:1000 | 货号:10 | 型号:lran |
处理浓度:100mg/L | 处理风量:1000m3/h | 启燃温度:300℃ |
空速:1.5 | 适用领域:沥青,家具 | 规格:10000 |
是否跨境货源:否 | 包装:电议 | 运输:电议 |
低温等离子设备
常州油烟净化器
渐进化科学调试。RTO炉调试时理应***行空载调试,待空载调试稳定后再逐步接入低浓度有机废气,如企业污水池加盖收集后废气、车间换风废气等,最终再逐步接入高浓度废气,同时对拟接入高浓度废气的排放流量、排放浓度进行检测,重点关注峰时浓度,单一排气点有机浓度宜控制在1ppm以内,不得超过5ppm。安装在线监控系统,设置电控系统操作间。RTO炉净化处理系统是一项人机高度结合的设备,虽然其自动化程度较高,但必须安排专人进行维护与管理,如RTO炉在发生前有机物浓度常会在短时间内迅速升高,此时系统若有人值守则可提前发出预警并采取必要的措施,避免事故的发生;同时对RTO各系统尾气安装TVOC浓度在线监控系统,为企业管理提供必要的数据支撑。
对于低浓度的VOCs具有很好的效果,比光氧催化效果好的多,广泛应用于多个行业,纺织,汽车制造,石油天然气管道,化工,化纤,印染,塑料,轮胎等
油烟净化器常州高压静电设备原理原理
化学需氧量还可与生化需氧量(BOD)比较,BOD/COD的比率反映出了污水的生物降解能力。生化需氧量分析花费时间较长,一般在2天以上水中生物方能基本消耗完全,为便捷一般取五天时已耗氧约95%为环境监测数据,标志为BOD5。详解化学需氧量表示在强酸性条件下重铬酸钾氧化一升污水中有机物所需的氧量,可大致表示污水中的有机物量。COD是指标水体有机污染的一项重要指标,能够反应出水体的污染程度。所谓化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。
低温等离子体工业废气处理成套设备和技术是在原电晕放电基础上由高频高压电场通过***放电产生的***低温等离子体技术具有能量高、电子发射密度高等特点,其净化原理如下:
1、在放电过程中,电子从电场中获得能量,通过非弹性碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,当污染物分子获得的能量大于其分子键能的结合能时,污染物分子的分子键断裂,直接分解成单质原子或由单一原子构成得无害气体分子。
2、等离子体中包含大量的高能电子、正负离子、激发态粒子和具有强氧化性的后型自由基,这些活性粒子和部分废气分子碰撞结合,同时产生的大量OH、HO、O等活性自由基和氧化性***的O,能与有害气体分子发生化学反应生成无害产物。
3、物理作用表现在具有荷电集尘作用。等离子体中的大量电子与颗粒污染物发生非弹性碰撞并粘附其表面从而使其荷电,在电场作用下,颗粒污染物被集尘极收集。
4、生物作用表现在具有消毒杀菌之功效。机理为:等等离子体中的正负粒子使微生物表面产生的电能剪切力大于其细胞膜表面张力,致使细胞膜遭到破坏而导致微生物死亡。
5、在放电过程中,电子从电场中获得能量,通过非弹性碰撞将能量转化为污染物分子的内能或动能,这些获得能量的分子被激发或发生电离形成活性基团,同时空气中的氧气和水分在高能电子的作用下也可产生大量的新生态氢、活性氧和氧等活性基团,这些活性基团相互碰撞后便引发了一系列复杂的物理、化学反应。从等离子体的活性基团组成可以看出,等离子体内部富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应转化为CO2和H2 O等物质,从而达到净化废气的目的。
高压静电设备
原理
达到输送液体的功能。以一个柱塞为原理介绍,一个柱塞泵上有两个单向阀,并且方向相反,柱塞向一个方向运动时缸内出现负压,这时一个单向阀打开液体被吸入缸内,柱塞向另一个方向运动时,将液体压缩后另一个单向阀被打开,被吸入缸内的液体被排出。这种工作方式连续运动后就形成了连续供液。隔膜计量泵:电机通过直联传动带动蜗轮蜗杆副作变速运动,在曲柄连杆机构的作用下,将旋转运动转变为往复直线运动。滑杆与隔膜片直接连接,工作时滑杆往复运动时直接推(拉)动隔膜片来回鼓动,通过泵头上的单向阀启闭作用完成吸排目的。同心圆电捕焦油器 湿式静电除焦器,管式电捕焦油器,蜂窝式电捕焦油器
属化工设备技术领域,用于在除焦的同时降低煤气温度,它由筒体、电晕线、捕焦管、隔板组成,其改进之处是,在筒体内的捕焦管区域水平放置多层水流导流板,导流板上分布有与捕焦管相同数量的圆孔,多层导流板的圆孔同心贯通,圆孔的直径大于捕焦管的外径,每根捕焦管贯穿多层导流板,筒体上部有进水口,筒体下部有出水口。采用这种结构的静电除焦器,循环水从筒体外部进来通过水流导流板,从管子的外壁流下形成一层水膜,该水膜将捕焦管包裹,煤气与水通过管子外壁的热传导作用进行换热达到降低煤气温度的目的,实现了发生炉煤气在冷却的同时也进行了静电除焦,既降低了煤气温度又提高了除焦的效率。
油烟净化器
原理
至今,鲜有能在连续流反应器中从无到有形成稳定颗粒污泥报道,即连续流好氧颗粒污泥技术至今仍未有***的发展。对此,美国弗吉尼亚理工大学王智武教授团队研发了一种活塞流式反应器以实现连续流好氧污泥颗粒化的技术(plug-flowaerobicgranulation,简称P:G),并成功应用于市政污水的二级处理()。活塞流式反应器已有研究表明,污泥沉降速度的选择力是推动好氧颗粒污泥形成的推动力。然而即使在传统的完全混合式反应器里加入了对污泥沉降速度的选择力,好氧颗粒污泥仍无法形成。
蜂窝式电捕焦油器壳体采用圆筒式结构,内件沉淀极所采用结构形式类似蜂窝式,蜂窝式的结构是将通道截面为正六边形。两个相邻正六边形共用一条边,即靠中间的正六边形的六条边均被包围它的六个正六边形所共用。用2-3mm的钢板制成的蜂窝板即可满足工艺和机械强度的要求。设备壳体由筒体、器顶封头与器底斜底组合而成。整个除焦器分为上、中、下3 段, 上、中部为高压静电场, 下部为集焦油室。浸渍罐烟气由下端侧面进入, 净化后的洁净气体由上端顶部由风机排出, 除尘器底部留有人孔维修方便。下端进气口设有2 层多孔板型气流分布板, 使气体在电场中均匀分布, 中部为高4-5m 的高压静电场。 其原理即在金属导线与金属管壁(沉淀极板)间施加高压直流电,使阴阳极之间形成电晕区。当含焦油雾滴等杂质的气体通过该电场时,吸附了负离子和电子杂质在电场库伦力的作用下,移动到沉淀极后释放出所带电荷,并吸附于沉淀极上,当吸附于沉淀极上的杂质量增加到大于其附着力时,会自动向下流并从电捕焦油器底部排出,从而达到净化气体的目的。蜂窝式电捕焦油器与其他焦油器相比,由于蜂窝式电捕焦油有结构紧凑合理、没有电场空穴,具有筒径小,占地少,有效截面(气净化工作面)大,气体处理量大成本低,电耗小,收焦油量大且油质优良,净化效***,处理后各种污染物可达标排放的优点。达到的技术指标,可明显改善操作环境。
湿式电捕焦油器,属化工设备技术领域,用于在除焦的同时降低煤气温度,它由筒体、电晕线、捕焦管、隔板组成,其改进之处是,在筒体内的捕焦管区域水平放置多层水流导流板,导流板上分布有与捕焦管相同数量的圆孔,多层导流板的圆孔同心贯通,圆孔的直径大于捕焦管的外径,每根捕焦管贯穿多层导流板,筒体上部有进水口,筒体下部有出水口。采用这种结构的电捕焦油器,循环水从筒体外部进来通过水流导流板,从管子的外壁流下形成一层水膜,该水膜将捕焦管包裹,煤气与水通过管子外壁的热传导作用进行换热达到降低煤气温度的目的,实现了发生炉煤气在冷却的同时也进行了静电除焦,既降低了煤气温度又提高了除焦的效率。加水的
管式电捕焦油器中的钢管与电晕线单独组成电场,其场强电压取决于钢管的半径,每个管截面内形成等级间距电场。由于列管式电捕焦油有制造容易、等级间距电场、操作使用方便等优点,受到合作企业的欢迎
四种类型的电捕焦油器均由壳体、沉淀极、上下吊架、气体分布板、蒸汽吹洗管、绝缘箱和馈电箱等部件组成,其主要区别于沉淀极的形式、电晕极的排布方式、绝缘箱和馈电箱。
油烟净化器常州高压静电设备原理
因此在我们设计中,当高层建筑分区给水系统卫生配水点静水压大于.35MPa时,应采取减压措施,从而减少超压出流现象。这样可以减少不必要的水量浪费。太阳能作为清洁能源,取之不尽,用之不竭。是节能的重要途径。我国属于太阳能资源丰富的国家之一,全国总面积2/3以上年日照时数2小时,辐射总量高于5MJ/(m2,均适合推广太阳能热水器。据有关资料显示:用水量按每人次淋浴热水量1L/人考虑,常年冷水平均水温15℃,淋浴热水温度45℃考虑,平均每人每次淋浴耗能=1L(4~1℃)(4.1913J/kg℃)=1257KJ,按每度电能热功当量36J/kWh计算,每人次淋浴用电量=1257/3617=3.48kWh。
工作原理
电捕焦油器的主体工作部分由电晕极与沉淀极组成。作负极的金属丝电晕极与作正极的金属板沉淀极之间施加额定直流高电压,由于负电荷离大在电场中运动速度比正电荷离子快,而且负电晕极击穿电压比正电晕极高,当煤气由设备底部进入,通过气体分布器流入电场空间时,气体分子在电场作用下产生电离。煤气中携带的焦油微粒绝大部分带上负电荷且沿电力线方向吸附于沉淀极的表面,放出电荷而成为中性的油粒,油雾粒子在极板表面不断凝聚,颗粒增大,***成为油滴重力沿沉淀极表面流淌至设备底部,经排污口排出。另外,在电晕极附近带上正电荷的那些焦油微粒则被电晕极导线吸附,沿导线表面流下,也汇聚于设备底部,净化后的煤气从设备顶部流出。
高压静电设备
原理
在反硝化区域设置到了硝化区前端后,出现了一个问题是,反硝化区在硝化区域前端,污水***入到反硝化区域,没有经过硝化区(好氧曝气池)的碳源大量消耗,为反硝化细菌提供充足的碳源,但是还存在一个问题,那就是污水中的氮的存在形式,大部分都是以有机铵和氨氮的形式存在的,大家可以看一下污水厂进水水质的分析,氨氮基本占到了总氮的8%左右,而反硝化所需要的盐的量是远远不够的,也就是说虽然有了充足的碳源,但是反硝化反应还是不能进行下去。